

Composite Technology Development, Inc.

ENGINEERED MATERIAL SOLUTIONS

Advanced Composites for Marine Energy

Composite Manufacturing Workshop

Paul E. Fabian April 16, 2021

Composites - What are they?

- Composite "consisting of two or more parts"
 - Composite Material
 - Two or more distinct constituent materials
 - Usually, these two materials have significantly different physical properties
 - Together they have a performance advantage
 - General Composite Material Make-up
 - Matrix (resin) thermosets, thermoplastics, metal, etc.
 - Reinforcement (fiber) glass, carbon, Kevlar, etc.
 - Advanced Composites
 - Typically, Carbon fiber + epoxy

Why use composites?

- Lots of reasons...
 - 1. High strength (and modulus) to weight ratio
 - a. Carbon fiber composite can be 5X stronger than 1020 steel, but is 1/5th of the weight
 - b. High modulus carbon fibers are much stiffer than any metallic
 - 2. Durable
 - a. Corrosion resistant
 - b. Withstand most environmental conditions
 - c. Higher fracture toughness than plastics
 - 3. Allow greater design options
 - a. Can mold parts that cannot be easily machined
 - b. Mold to near net shape less finish work, less scrap
 - 4. Often can be fabricated cheaper than similar metallic parts
 - a. Less waste

Example: Sports Car

Composite Hydroturbine Runner (Blade) Program

Project Summary

 Project goal: Verify that composite materials are a reliable and economic alternative to traditional metallic runners to reduce costs and increase energy capture.

Project Objective & Impact

- Prototype a weight-efficient, fatigue resistant, low-maintenance turbine runner using composite materials to reduce mass and extend service life.
- Improve runner reliability by developing a high-performance coating system that resists cavitation and sediment erosion.
- Provide performance test data of the composite runner/coating in true hydropower turbine operating conditions.

Runner Manufacturing

- Design
 - Determine governing performance requirements
 - Stresses, strains, stiffness?
 - For Composite Runner driving requirement was stiffness and deflection at tip
 - Select materials
 - CTD-KO8 Resin/high modulus carbon fiber
 - Perform Finite Element Analysis

- Composite Manufacturing
 - Select process
 - Liquid resin infusion, prepreg/vacuum bag, vacuum assisted RTM, etc.
 - VARTM process selected
 - One or two-part mold (2 part for blades)
 - Dry fiber preform placed inside 2-part mold
 - All air evacuated from mold
 - Placed under vacuum to reduce voids
 - Resin degassed and injected into mold
 - Some resins require heating to reduce the viscosity
 - Resin/part cured in oven

Mold in Oven

Runner Manufacturing

Following cure, part is removed from mold

Mold is closed up, plumbed, degassed, and resin fed into mold

Post-Fabrication Machining

Composite Blade-to-Hub Bonding

- Blade sanded to final thickness at metallic interface area
- Measured spacing between blade and hub interface to ensure proper bond line thickness
- Surface prep and bond parts using a suitable adhesive

Finished Blade/Hub Insert Assembly

Final Step – Coating Application

- Cavitation Resistant Coating
- Using CTD-133 soft coating
 - ARL cavitation erosion tests showed CTD-133 the best coating
 - Application trials performed on coupons to start
 - Curing must be done at elevated temperatures in oven

- High quality composite hydroturbine runners were fabricated
- Many different processes used during manufacturing
 - VARTM composite fabrication process
 - Post-fabrication machining
 - Adhesive bonding of composites to metallics
 - Polymer coating
- Proved through static and fatigue mechanical testing that composite parts behaved similar to 410 Stainless steel that is typically used for runners
- Cavitation resistant coating should provide longer use life in use
- Lighter weight runners (by more than 50%) will make replacing the blades in hydroturbines much easier
- A set of three runners is awaiting testing at PSU-ARL's 48" water tunnel

Questions?